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O. INTRODUCTION

In his paper concerning the theory of optimal approximation [12J,
A. Sard has developed a method for the construction of spline approxi
mations in an abstract setting. Sard's method provides a unified approach
to the minimal property in the ground space and to the dual minimal
property of the classical polynomial spline functions (cf. Schoenberg [13],
[14]). On the other hand the authors have introduced in [6], [7] the concept
of spline system to obtain the principal "intrinsic" properties of the classical
spline theory from a purely functional analytic point of view. In the present
paper one of our basic aims is to study some connections between the method
of Sard which will be described by the notion of Sard system (see Section 1)
and the concept ofspline system.

Section 1 is devoted to a concise description of Sard's method and to a
formulation of a general Dirichlet principle with generalized boundary
conditions. Moreover, it contains the construction of a spline system
associated with a given Sard system and establishes dual minimal properties
for spline approximations. Then, in Section 2, we present as an application
of the results derived in Section 1 the Sard systems of Hermite cubic splines,
of periodic cubic splines, and of the Dirichlet problem in Rn, and describe
the spline systems associated with them. Section 3 studies some convergence
properties of spline approximations which are constructed by means of
spline systems. Finally, Section 4 collects some additional remarks.

For a general survey of the theory of spline functions we refer the reader
to the monographs by Ahlberg-Nilson-Walsh [2] and Laurent [10].

1. THE METHOD OF SARD AND THE ASSOCIATED SPLINE SYSTEM

Let us begin with the definition of Sard systems. Suppose that (X; II '11)
denotes a Banach space and that (Y; (. I .)y), (Zj; (. I .)z) (1 ~j ~ m)
form a family of prehilbert spaces. We emphasize that, throughout this paper,
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SARD'S METHOD AND SPLINE SYSTEMS 231

all vector spaces are considered to be modelled over the field R of real
numbers. Let

UE2'(X, Y);

Fj E 2'(X, Zj) (1 ~j ~ m)

be norm continuous R-linear mappings. The tuplet

(X; Y; Zl ,..., Zm ; U; F1 , ••• , Fm) (1)

is called a (real) Sard system iff there exists a constant B > 0 such that the
following inequality of Friedrichs type

II X 11 2 ~ B (II U(x)ll} + L II FlX)II~j)
l<;;J<;;m

(2)

holds for all elements x E X.
Define a scalar product on X according to the Golomb-Weinberger

procedure [9] as follows:

(. I .)x = (UO I UOh + L (Fk) IFk»zj .
1<;;j<;;m

(3)

Then (X; (. I .)x) becomes a Hilbert space. Clearly X under the graph norm
II . Ilx which is canonically induced by the scalar product (. I .)x is toplinear
isomorphic to the initially given space (X; II . II). It follows that there exists a
unique orthogonalprojector Pm of the Hilbert space X satisfying the condition

lm(Pm) = ( n Ker(Fj »)1-.
l<;;j<;;m

Here lmO (resp. Ker('» denotes as usual the image (resp. the kernel) of the
linear mapping under consideration and 01- stands for the orthogonal
supplement with respect to the scalar product (. I ')x. The linear mapping
Pm E 2'(X) = 2'(X, X) is called the spline projector of the Sard system (1)
and for any Xo E X the element Pm(xo) E X is referred to as the spline
approximation of Xo ' By the projection theorem, the latter satisfies the
following general Dirichlet principle:

THEOREM 1 (Sard [12]). Let any element Xo E X be given. The spline
approximation Pm(xo) ofX o is the unique element in the set ofall x E X subject
to the "generalized boundary conditions"

for 1 ~j ~ m,

which minimizes the Dirichlet functional

x -- II U(x)lly .
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Using the terminology of Sard [12], Pm represents the optimal approxi
mation of the identity automorphism idx . It should be observed, however,
that the hypotheses of Sard concerning the completeness of the ranges
Im(Fj) in Zj (l ~ j ~ m) are not necessary for the validity of the theorem
supra.

The following theorem establishes a connection between Sard's method as
described by the notion of Sard system and the concept of spline system.
The definition of the latter one will not be repeated here. It can be found in
the papers [6], [7] cited in Section O.

THEOREM 2. Let Pm be the spline projector of the Sard system

(X; Y; Zl ,..., Zm ; U; F1 , ••• , Fm).

If Im(U) is a complete vector subspace of the prehilbert space Y, then

(X, Pm, U,Im(U)) (4)

represents a (real) spline system.

Proof We have to check the defining properties (I)-(IV) of spline systems.

(I) It follows from the definition that Pm E 2'(X) is an idempotent
endomorphism of X.

(II) Since Im(U) is assumed to be complete, the open-mapping
theorem shows that U E 2'(X, Im(U)) is an epimorphism, Le., a continuous
open surjective linear mapping.

(III) For any XoE X satisfying Fixo) = 0 for 1 ~ j ~ m and any
point x E Ker(U), we have obviously (xo I x)x = O. Consequently the
inclusion

Ker(U) C ( n Ker(Fj))l.
l.;;i<;;m

obtains. Thus, the kernel condition

Ker(U) C Im(Pm)

is established.

(IV) Let Pm' = idx - Pm be the supplementary orthogonal projector
corresponding to Pm . Obviously (3) yields the identity

(U 0 Pm(Xl) I U 0 Pm'(X2))Y = 0

for any pair (Xl' XJ E X X X. Thus the orthogonality relation

Im(U 0 Pm) ..L Im(U 0 Pm')

holds and the proof is complete.
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In the following we shall refer to (4) as the spline system associated with
the Sard system (1). As is well known from the Banach epimorphism theorem,
it is sufficient for the validity of Theorem 2 that Im(U) is assumed to be
nonmeager (Le., of the second Baire category) in itself. For applications of
Theorem 2, however, the next theorem is of greater importance.

THEOREM 3. Let the Sard system (1) be given. lffor an integer mo, where
:'( mo :'( m, the tuplet

is a Sard system satisfying the condition

Ker(U) = ( () Ker(Fj)Y-
l~J~mo

(5)

(6)

then Im(U) is a complete vector subspace of Y.

Proof Consider the Sard system (5) and let (Yn)n>l be a Cauchy sequence
in Im(U). Choose a sequence (Xn)n>l in Ker(U)l- such that U(xn) = Yn for
any index n ?:: 1. Combining (2) and (6) we see that (Xn)n>l is a Cauchy
sequence in the space X. Let Xo E X be its limit. Then (Yn)n>l converges in
Im(U) towards the point Yo = U(xo).

For another sufficient condition which guarantees the completeness of
Im(U) and which is based on an inequality of the Poincare type, see [5].

Suppose that Im(U) is complete. As we have stated in [6], [7], the minimal
properties of the spline system (X, Pm , U, Im(U» in the ground space take
the following form: For any Xo E X the inequalities

II U(xo) - U a Pm(xo)lly :s;; II U(Xo) - U a Pm(x)llY,

II U(Xo) - U a Pm'(xo)lly :s;; II U(Xo) - U a Pm'(x)lly
(7)

hold for all points x E X. Since Pm' is the orthogonal projection in the
Hilbert space X on its vector subspace

() Ker(Fj ),

l:(j~m

the second one of the inequalities (7) implies the statement of Theorem 1.
On the other hand, the dual minimal property of spline systems, i.e., the
generalized Schoenberg theorem yields a dual minimal property for the spline
projector of Sard systems. For its explicit formulation we have to introduce
the transposed linear mappings between the associated strong topological duals

tu E 2(Y', X');
tPm E 2(X');
tpm ' E 2(X').
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Moreover, let us introduce the (continuous) inverse linear mapping

W = (tU)-l E 2(Im(tU), Y').

We shall suppose without any loss of generality that Im(U) = Y, i.e., that
U E 2(X, Y) represents an epimorphism. Then, according to [6], for any
xu' E X' the inequality

II W 0 tpm'(xo')lly· ~ II W(xo' - tpm(x'))IIY.

holds for all points x' E xu' + Im(tU). If we observe the identity

Im(tU) = Ker(U)O,

where (-)0 stands for the polar with respect to the canonical bilinear form
(x, x') -- <x, x') of the real duality (X, X'), we obtain the following result:

THEOREM 4 (dual minimal property). Suppose that Im(U) = Yand let Y
be complete (i.e., a Hilbert space). Fix any continuous linear form xu' EX'.
Then t pm(xo') is the unique linear form in the set of all x' E x' subject to the
exactness condition

<z, x') = <z, xo')

which minimizes the functional

for all Z E Ker(U),

The foregoing theorem is a general functional analytic form of Schoenberg's
approximation theorem and represents an additional aspect of Sard's theory.
In the next section we shall point out some concrete applications of these
results. For this purpose, the following notion reveals to be useful:

The Sard system (1) is said to satisfy a Poincare condition provided that
Im(U) = Yand that there exist a prehilbert space (Z; (. I .)z) and a linear
mapping FE 2(X, Z) which have the following properties:

(i) (X; Y; Z; U; F) is a Sard system;

(ii) The relations
n Ker(Fj ) c: Ker(F);

l<j~m

Ker(U) = Ker(Ff!'

are valid where ..1 denotes orthogonality with respect to the scalar product

«. I ')h = (U(·) I U('))y + (F(·) IF(·))z

on the vector space X.

(8)

(9)
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Observe that the identity (9) together with Theorem 3 implies that Y is
a Hilbert space. Thus, by Theorem 2, the spline system

(X, Pm, U, Y)

associated with (1) can be formed.

EXAMPLE. Let Q be a relatively compact domain in the real Euclidean
n-space Rn whose boundary 8Q is C(j' embedded in Rn. Ifj denotes the canonical
injection

W1,2(Q) c---* V(Q)

of the real Sobolev space W1,2(Q) into the standard Lebesgue space
V(Q) = V(Q; An) then

(W1,2(Q); Im(V); V(Q); V;j)

is a Sard system. If we combine it with

(W1,2(Q); Im(V); R; V; J)

where

the classical Poincare inequality (see, for instance, Necas [11, Chap. I))
shows that it satisfies a Poincare condition. See also Section 2, Example (iii).

THEOREM 5. Let the Sard system (1) satisfy a Poincare condition as
described above. Then, for any XoE X, the functional

where x E X runs through the set ofall vectors which satisfy the condition

takes its minimum at x = Pm(xo).

For the proof of Theorem 5 we have to establish two lemmas.

LEMMA 1. The continuous projector Pm in the Hilbert space (X; «. I ')h)
is selfadjoint, hence orthogonal.

Proof Part (IV) of the proof belonging to Theorem 2 shows that the
orthogonality
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holds for all pairs (Xl' X2) E X X X. Since Pm'(X2) E nl<;;;<;;m Ker(F;), the
inclusion (8) yields

Thus we have

whence

for any pair (Xl' X2) E X X X. Consequently Pm = Pm*.

LEMMA 2 (U. Tippenhauer). For the continuous linear mapping U of the
Hilbert space (X; «. I ')h) onto the Hilbert space (Y; (. I ')y) and its adjoint U*,
the identity

(U*)-l(X) = U(x)

holds for all points X E Ker(F).

Proof Let xE X be an arbitrary point. For any X E Ker(F) we have
«x I x)h = (U(x) I U(x»y and therefore

«U*)-l(X) [ U(x»y = «U* ° (U*)-l(X) I x)h

= «x I x»x
= (U(x) I U(x»y.

Since U is surjective, the conclusion follows.
To complete the proof of Theorem 5, we introduce the toplinear

isomorphism
jx: X 3 X ""+ (X 3 X ""+ «x I x)h) E X'

of the Hilbert space (X; «.\ ')h) onto the Banach space X' and the canonical
linear isometry

of the Hilbert space (Y; (. [ ')y) onto its strong topological dual Y'. Then the
identities

P * (. )-1 tp .
m = lx ° m °lx,

U* = Ux)-lo tu ° jy

hold. If we observe that

jx(Ker(F» = Ker(U)O,

Theorem 4 together with Lemmas I and 2 establishes the result.
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2. THREE EXAMPLES OF SPLINE SYSTEMS
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(i) Let I = [0, 1] be the compact unit interval of R with induced
Lebesgue measure .\ and $"2(1) the vector space consisting of the germs with
respect to the neighborhood filter of I of all real-valued functions I in R for
which the first derivative DI is absolutely continuous on I and D2j belongs
to the Hilbert space L2(I; A) = V(I). For any point s E I let Es denote the
Dirac measure located at sand E/ its derivative in the sense of Schwartz
distribution theory. Suppose that the space $"2(1) is equipped with the scalar
product

(f, g) ""'" (f, EO> . (g, EO> + (f, EO'> • (g, EO') +rD2f(s) . D2g(S) d.\(s)

and the canonically induced norm II . II. Observe that $"2(1) is toplinear
isomorphic to the Sobo1ev space w2.2(1). Furthermore, let

(N ~ 1)

be a given subdivision of I with the mesh points

(10)

Then the tuplet

represents a Sard system. Since the continuous linear mapping D2:
$"2(I) --+ V(I) is surjective, Theorem 2 is applicable. If SPw denotes the spline

o
projector of (11), it shows that

is a spline system. It follows from Theorem 1 combined with Holladay's
theorem (see Ahlberg-Nilson-Walsh [2, Chap. III]) that the projector SPwo
is the cubic spline interpolator of Hermite type associated with the partition
Wo' In the present case, an application of Theorem 4 yields the classical
Schoenberg approximation theorem for cubic splines as we have shown in [7]
in the more general setting of L m -splines. In this connection also see
Atteia [4] and [5].

(ii) Let T = R/Z be the one-dimensional torus and fL the Haar
measure on T normalized by fL(T) = 1. Construct the Hilbert space
V(T; fL) = V(T) and for the Lie group T the vector space $"2(T) of all
real-valued functions IE ~l(T) for which f#: s ""'" f(e21TiS) is absolutely
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continuous on I and Do/E U(T). Equip Jf"2(T) with the norm II . II derived
from the following scalar product:

(1, g) ""+ <1, 101> . <g, 101> + IT D2j(t) . D2g(t) dp.(t)

= J(I) . g(l) +rD2J#(S) . D2g#(S) dA(s).

See, for instance, Ehlich [8]. Moreover, denote by

(N?: I)

a partition of T which is not necessarily equidistant and which has the nodes

(0 <; v <; N - I).

The points (sv)O<v<N-1 in I are assumed to be ordered as in (10). Then

represents a Sard system. Let SPPw be its spline projector and introduce the
closed vector subspace

L o2(T) = {fE U(T) 1/(0) = O}

of U(T), where
U(T) 3f ""+ IE U(Z)

denotes the Fourier transformation. It follows that

is the spline system ofperiodic cubic splines. In particular, SPPw is the periodic
cubic spline interpolator. An application of Theorems 1 and 4 yields its
minimal properties as proved in Chapters III and V of Ahlberg-Nilson
Walsh [2]. We omit the details.

(iii) Let Q be a relatively compact domain in the n-dimensional
Euclidean space (Rn; I . I) with Lipschitz boundary aQ. Let An be the Lebesgue
measure induced in Q and (J the surface measure on aQ. Define the Sobolev
space W1,2(Q) with its usual normf ""+ Ilfllw1,2(Q) , where

Then the gradient
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and the restriction mapping "au sens des traces" (Necas [11, Chap. 1])

restan: W1.2(Q) ->- U(8Q)
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are continuous linear mappings. By virtue of the classical Friedrichs inequality
(Necas [11, Chap. 1]) there exists a constant B > 0 such that the estimate

holds for all functionsfE W1.2(Q). Consequently we see that

(12)

is a Sard system; cf. also [5] and Atteia [3]. If H n denotes the corresponding
spline projector, then Theorem 1 shows that for any function fo E Wl.2(Q)

its projection Hn(fo) minimizes the "energy integral"

whenfE W1.2(Q) runs through the set of all functions which assume the same
boundary values than fo . Thus we obtain by the classical Dirichlet principle
(Sobolev [15, Chap. II]) the following result:

THEOREM 6. Let thefunctionfo E W1.2(Q) be given. Then Hn(fo) E Wl·2(Q)

solves the Dirichlet problem

iJHn(fo) = 0;

restan Hn(fo) = restanfo

for the pair (Q, restanfo) in the sense of traces.

Next, define the continuous linear form

F: Wl.2(Q) 3f -- r f(x) da(x)
Jan

on the Sobolev space W1.2(Q). If C > 0 denotes an appropriate constant,
the following well known estimate (Sobolev [15, Chap. II])

holds for all functionsfE Wl·2(Q). Thus

(Wl.2(Q); Im(V); R; V; F) (13)
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defines a Sard system. The system (12) together with (13) satisfies the
hypotheses ofTheorem 5. Hence this theorem makes the following variational
principle apparent:

THEOREM 7. Suppose that fo E W1.2(Q) is given. Then the minimum of

where fE W1.2(Q) runs through the set of all functions which satisfy the
condition

r lex) d<l(x) = r fo(X) d<l(x)
Jan Jan

is assumed whenf = Hn(fo).

3. CONVERGENCE PROPERTIES OF SPLINE ApPROXIMATIONS

In addition to the minimal properties there are several well-known
convergence properties of the classical spline functions. See Ahlberg-Nilson
Walsh [1], [2]. In the present section we shall deal with convergence properties
of spline approximations constructed by means of spline systems via the
method of Sardo

Let a sequence

«X; Y; Z1 ,... , Zm ; U; F1 ,... , Fm»m;;>1

ofSard systems be given which has (Pm)m;;>1 as its sequence ofspline projectors.
We shall suppose that U is surjective and that Y = Im(U) is a Hilbert space.
Let X be endowed with the scalar product (. \ 'h defined as in (3) by the
Sard system (X; Y; Z1 ; U; F1) and denote by P the orthogonal projector of
the Hilbert space (X; (. I 'h) onto the closed vector subspace

Im(P) = (() Ker(F;»)J..
3;;>1

THEOREM 8. The tuplet

(X, P, U, Y), (14)

where P is defined as indicated above represents a spline system. For any Xo E X
the convergence

(15)

holds for the sequence (Pm(XO»m;;>l of spline approximations of X o •
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Proof. Let the vector space .P(X) of continuous endomorphisms of X
be equipped with the topology of pointwise convergence. Since, by Lemma 1
(which is indeed applicable), (Pm)m>l is an increasing sequence of orthogonal
projectors in (X; (. I ')x), it converges in .P(X) towards an orthogonal
projector Q in (X; (. I .)x) which has

Ker(Q) = n Ker(Pm)
m>l

as its kernel. In view of the fact that the identity

Ker(Pm) = n Ker(Fj )

l()<,m

holds for any m :> 1, we obtain

Ker(Q) = n Ker(Fj ).

1;;.1

Thus P = Q and the pointwise convergence (15) follows.
Concerning the fact that (14) is a spline system, it is obviously

sufficient to prove that Ker(U) C Im(P) and that the orthogonality relation
Im(U 0 P) 1- Im(U 0 P') holds in the Hilbert space Y. By the general
hypotheses we have made and by Theorem 2 we see that «X, Pm , U, Y))m>l
is a sequence of spline systems. Thus

Ker(U) C Im(Pm )

for any m :> 1 and therefore

Ker(U) C Im(P).

Finally we have

for any pair (Xl' X 2) E X X X and any m :> 1. Thus the statement becomes
evident.

EXAMPLES. We shall switch back to the Examples (i) and (ii) of Section 2
which are dealing with cubic splines. In the interval I let (Wn)n;;'l be a sequence
of partitions of type (10) such that

for all n:> 1;
(16)

is everywhere dense in I.
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Then an application of Theorem 8 yields the convergence property

lim liSP", (j) - ill = 0
n--')CX) n

in the norm topology of the space f2(I) for any f E f2(l).
In the same way, if (Wn)n;>l is a sequence of meshes on the torus T with

properties analogous to (16), the convergence of the periodic cubic spline
interpolation functions

lim II SPP", (j) - ill = 0
n-HXJ n

follows for any functionfE f2(T) with respect to the norm topology of the
space f2(T).

4. CONCLUDING REMARKS

The Examples (i) and (ii) of Section 2 are restricted to the case of cubic
splines only for notational convenience. Their extensions to general
polynomial spline functions are immediate and will not be given here. For the
case of Lm-splines, where Lmdenotes a linear differential operator of order m
with sufficiently smooth real-valued coefficient functions, see the dissertation
[5]. Furthermore, it should be observed that the convergence properties
proved in Section 3 for sequences of spline approximations are more
generally valid for arbitrary directed families of spline projectors. This fact
will be of importance for spline functions in several variables, i.e., for tensor
products of spline systems. The details will be treated in a forthcoming paper.
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